The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Oct. 06, 2020
Filed:
Oct. 13, 2017
Robert Magnusson, Arlington, TX (US);
Yeong Hwan Ko, Grand Prairie, TX (US);
Robert Magnusson, Arlington, TX (US);
Yeong Hwan Ko, Grand Prairie, TX (US);
Other;
Abstract
Narrow bandpass filters are useful in numerous practical applications including laser systems, imaging, telecommunications, and astronomy. Traditionally implemented with thin-film stacks, there exists alternate means incorporating photonic resonance effects. Accordingly, here we disclose a new approach to bandpass filters that engages the guided-mode resonance effect working in conjunction with a cavity-based Fabry-Pérot resonance to flatten and steepen the pass band. Both of these resonance mechanisms are native to simple resonant bandpass filters placed in a cascade. To support the disclosure, numerical examples provide quantitative spectral characteristics including pass-band shape and sideband levels. Thus, we compare the spectra of single-layer 1D- and 2D-patterned resonant gratings with a dual-grating cascade design incorporating mathematically identical gratings. Dual and triple cascade designs are measured against a classic multi-cavity thin-film filter with 151 layers. The disclosed examples show comparable and improved results achieved with these sparse structures while engaging principles absent in corresponding state-of-the-art technology.