The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 25, 2020
Filed:
May. 10, 2019
Foster-miller, Inc., Waltham, MA (US);
Neil Judell, Cambridge, MA (US);
Foster-Miller, Inc., Waltham, MA (US);
Abstract
A code division multiaccess (CDMA) communications system with low probability of intercept, low probability of detect (LPI/LPD) includes at least one data dictionary stored on a storage device of a sender subsystem and a recipient subsystem. The at least one data dictionary includes at least one data predetermined start time and date, at least one data predetermined end time and date based on a mission length or a predetermined wrap time and date, a CDMA chip rate, and a complex zero-mean independent and identically distributed (iid) sequence where each complex number in the complex zero-mean iid sequence represents a CDMA chip stored on the storage device of the sender subsystem and the recipient subsystem. The system includes a tangible, non-transitory, machine-readable medium comprising machine-executable instructions which, when executed by at least one processor of a machine, cause the at least one processor to: receive a message, convert the message to symbols with corresponding phasors, determine a date and time to send the message, look up a data spreading vector for each corresponding phasor by providing a mutually agreed number of chips per phasor stored on the storage device of the sender subsystem and the recipient subsystem and by matching the date and time the message is to be sent to the at least one data predetermined start time and date and the at least one data predetermined end time and date. Each data spreading vector is multiplied by its corresponding phasor to create a data spread vector for each data spreading vector. The sender subsystem is configured to sequentially transmit each chip of each data spread vector as a signal.