The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 23, 2020
Filed:
May. 30, 2016
National Institute for Materials Science, Ibaraki, JP;
Hiroshi Harada, Ibaraki, JP;
Kyoko Kawagishi, Ibaraki, JP;
Toshiharu Kobayashi, Ibaraki, JP;
Tadaharu Yokokawa, Ibaraki, JP;
Makoto Osawa, Ibaraki, JP;
Michinari Yuyama, Ibaraki, JP;
Shinsuke Suzuki, Tokyo, JP;
Yuichiro Joh, Tokyo, JP;
Satoshi Utada, Tokyo, JP;
NATIONAL INSTITUTE FOR MATERIALS SCIENCE, Ibaraki, JP;
Abstract
A method for recycling a Ni-based single crystal superalloy part or unidirectionally solidified superalloy part provided with a thermal barrier coating containing at least a ceramic on a surface of a Ni-based single crystal superalloy substrate or Ni-based unidirectionally solidified superalloy substrate, in which the method including the steps of: melting and desulfurizing a Ni-based single crystal superalloy part or Ni-based unidirectionally solidified superalloy part at a temperature of the melting point or more of the Ni-based single crystal superalloy or Ni-based unidirectionally solidified superalloy and less than the melting point of the ceramic; heating a casting mold for a recycled Ni-based single crystal superalloy part or casting mold for a recycled Ni-based unidirectionally solidified superalloy part to a temperature of the melting point or more of the Ni-based single crystal superalloy or Ni-based unidirectionally solidified superalloy; pouring the desulfurized melted Ni-based single crystal superalloy or Ni-based unidirectionally solidified superalloy into the casting mold, and producing a melting stock or growing a Ni-based single crystal superalloy or Ni-based unidirectionally solidified superalloy; and removing the melting stock or the recycled Ni-based single crystal superalloy part or recycled Ni-based unidirectionally solidified superalloy part from the casting mold. In this way, a method for recycling a Ni-based superalloy part, by which the recycle cost of a Ni-based superalloy part and the lifetime cost of a highly efficient gas turbine engine using a Ni-based superalloy part can be significantly reduced, and further a Ni-based superalloy part having the same high-temperature strength and oxidation resistance as those of a newly produced Ni-based superalloy part can be obtained, is provided.