The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Apr. 21, 2020
Filed:
Oct. 20, 2017
Elite Electronic Material (Kunshan) Co., Ltd., Kunshan, Jiangsu Province, CN;
Xingxing Yao, Kunshan, CN;
Rongtao Wang, Kunshan, CN;
Ziqian Ma, Kunshan, CN;
Yan Zhang, Kunshan, CN;
Bingbing Li, Kunshan, CN;
Zhenfang Shang, Kunshan, CN;
Mingsheng Yuan, Kunshan, CN;
Elite Electronic Material (Kunshan) Co., Ltd., Kunshan, Jiangsu Province, CN;
Abstract
Provided is a resin composition and articles made therefrom, wherein the resin composition comprises 40 to 80 parts by weight of maleimide monomer and/or resin; 10 to 30 parts by weight of oxydianiline type benzoxazine monomer and/or resin; 10 to 40 parts by weight of flame retardant; wherein the flame retardant comprises one or more of a flame retardant having a thermal decomposition temperature of greater than 380° C., a metal phosphinate flame retardant and bis(pentabromophenyl) ethane; and wherein the metal of the metal phosphinate flame retardant is selected from Group 13 elements. By using maleimide monomer and/or resin, oxydianiline type benzoxazine monomer and/or resin and flame retardant comprising one or more of a flame retardant having a thermal decomposition temperature of greater than 380° C., a metal phosphinate flame retardant and bis(pentabromophenyl) ethane, the peel strength and the glass transition temperature of the laminate made from the resin composition are remarkably improved while the dissipation factor of the laminate is also decreased; therefore, the demand for high frequency and high thermal resistance circuit boards is satisfied.