The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jan. 14, 2020
Filed:
Jul. 06, 2017
Dalian University of Technology, Dalian, Liaoning Province, CN;
Jianjian Shen, Dalian, CN;
Chuntian Cheng, Dalian, CN;
Lifei Sun, Dalian, CN;
Chengguo Su, Dalian, CN;
DALIAN UNIVERSITY OF TECHNOLOGY, Liaoning, CN;
Abstract
The invention that relates to the field of hydropower scheduling presents a method for long-tens optimal operations of interprovincial hydropower system considering peak-shaving demands. It can take full advantage of the differences of hydrological characteristics among hydropower plants on different rivers to implement compensation operations of interprovincial hydropower system. In this operation, typical daily load demands during dry season are considered to optimize the allocation of hydropower production over one year. The purpose is to increase the dispatchable generation capacity for peak demands of power grids. The technology scheme of the invention can be summarized as follows. A multi-objective model of hydropower system operations is established with maximizing generation production and minimizing the difference rate between peak and valley load during dry period. The difference of hydrological characteristics and regulation performance between rivers and plants are utilized to divide all power plants into several groups and their calculation order. A hybrid algorithm that integrating progressive optimality algorithm and discrete differential dynamic programming is presented to optimize monthly reservoir levels of hydropower plants. During optimization, a load reconstruction-based strategy is used to handle time-coupled network security constraints so that feasible hourly generation schedules far peak-shaving are easily obtained. An iterative procedure is executed to obtain the optimal monthly generation schedules and hourly power curves at the typical day of each month. The invention can make full use of the compensation operation characteristics of hydropower plants to meet the demands of coordinating monthly generation production and daily peak power. It is capable of providing the support for interprovincial power transmission and joint operations of China's huge hydropower plants such as Xiluodu and Jinping.