The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Nov. 12, 2019
Filed:
Aug. 02, 2016
Kawasaki Jukogyo Kabushiki Kaisha, Kobe-shi, Hyogo, JP;
National University Corporation Tokyo University of Marine Science and Technology, Tokyo, JP;
Yohei Murase, Kobe, JP;
Etsuya Yanase, Kobe, JP;
Toshiyuki Yanamoto, Kobe, JP;
Mitsuru Izumi, Tokyo, JP;
Motohiro Miki, Tokyo, JP;
Kota Yamaguchi, Tokyo, JP;
Abstract
Provided is a rotary machine capable of increasing cooling efficiency while preventing an increase in the weight and cost of a rotor even in a case where the diameter of the rotor is increased. A rotary machine including a rotor which is rotatable around a rotational axis, and a cooling device, wherein the rotor includes: a hollow cooling medium flow section provided in a center portion of the rotor in a radial direction and extending along the rotational axis; and a cooling target provided outward of the cooling medium flow section in the radial direction, and the rotary machine comprises a stationary section pipe which introduces a liquid phase cooling medium generated by cooling in the cooling device into the cooling medium flow section, and returns a gas phase cooling medium present in an inside of the cooling medium flow section from the cooling medium flow section toward the cooling device, the rotor including: a leading passage which leads the liquid phase cooling medium to a region which is in the vicinity of the cooling target through a first opening formed in a side surface of the cooling medium flow section, the side surface extending along the rotational axis; and a return passage which returns the gas phase cooling medium to the inside of the cooling medium flow section, the gas phase cooling medium being generated by evaporation of the liquid phase cooling medium in the region which is in the vicinity of the cooling target, by heat exchange between the liquid phase cooling medium and the cooling target.