The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.

The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.

Date of Patent:
Oct. 01, 2019

Filed:

May. 26, 2017
Applicants:

Shilpa N. Raja, Berkeley, CA (US);

Danylo Zherebetskyy, Walnut Creek, CA (US);

Siva Wu, Berkeley, CA (US);

Peter Ercius, Oakland, CA (US);

Andrew C. K. Olson, San Francisco, CA (US);

Paul Alvisatos, Berkeley, CA (US);

Robert O. Ritchie, Berkeley, CA (US);

Sanjay Govindjee, Lafayette, CA (US);

Inventors:

Shilpa N. Raja, Berkeley, CA (US);

Danylo Zherebetskyy, Walnut Creek, CA (US);

Siva Wu, Berkeley, CA (US);

Peter Ercius, Oakland, CA (US);

Andrew C. K. Olson, San Francisco, CA (US);

Paul Alvisatos, Berkeley, CA (US);

Robert O. Ritchie, Berkeley, CA (US);

Sanjay Govindjee, Lafayette, CA (US);

Assignee:
Attorney:
Primary Examiner:
Int. Cl.
CPC ...
G01L 1/24 (2006.01); C08J 5/18 (2006.01); C08K 3/30 (2006.01); C08K 3/10 (2018.01); C09K 11/02 (2006.01); C09K 11/88 (2006.01); C09K 11/56 (2006.01); G01N 33/44 (2006.01); C08K 7/16 (2006.01); G01N 21/64 (2006.01); C08K 9/02 (2006.01); G01N 33/00 (2006.01);
U.S. Cl.
CPC ...
G01L 1/247 (2013.01); C08J 5/18 (2013.01); C08K 3/10 (2013.01); C08K 3/30 (2013.01); C08K 7/16 (2013.01); C08K 9/02 (2013.01); C09K 11/02 (2013.01); C09K 11/565 (2013.01); C09K 11/88 (2013.01); G01N 21/6428 (2013.01); G01N 21/6489 (2013.01); G01N 33/442 (2013.01); C08J 2353/00 (2013.01); C08K 2003/3027 (2013.01); C08K 2003/3036 (2013.01); C08K 2201/001 (2013.01); C08K 2201/003 (2013.01); C08K 2201/011 (2013.01); G01N 2033/0096 (2013.01);
Abstract

Nanoscale stress-sensing can be used across fields ranging from detection of incipient cracks in structural mechanics to monitoring forces in biological tissues. We demonstrate how tetrapod quantum dots (tQDs) embedded in block-copolymers act as sensors of tensile/compressive stress. Remarkably, tQDs can detect their own composite dispersion and mechanical properties, with a switch in optomechanical response when tQDs are in direct contact. Using experimental characterizations, atomistic simulations and finite-element analyses, we show that under tensile stress, densely-packed tQDs exhibit a photoluminescence peak shifted to higher energies ('blue-shift') due to volumetric compressive stress in their core; loosely-packed tQDs exhibit a peak shifted to lower energies ('red-shift') from tensile stress in the core. The stress-shifts result from the tQD's unique branched morphology in which the CdS arms act as antennas that amplify the stress in the CdSe core. Our nanocomposites exhibit excellent cyclability and scalability with no degraded properties of the host polymer. Colloidal tQDs allow sensing in many materials to potentially enable auto-responsive, smart structural nanocomposites that self-predict impending fracture.


Find Patent Forward Citations

Loading…