The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 18, 2019
Filed:
Feb. 23, 2015
Tohoku University, Sendai, Miyagi, JP;
Shigetoshi Sugawa, Sendai, JP;
Rihito Kuroda, Sendai, JP;
TOHOKU UNIVERSITY, Sendai, Miyagi, JP;
Abstract
To provide a concentration measuring method with which the concentration of a predetermined chemical component can be accurately, quickly, and nondestructively measured down to a concentration range of an extremely small amount with a simple means, and to provide a concentration measuring method with which the concentration of a chemical component in an object to be measured can be accurately and quickly measured down to a concentration range of a nano-order extremely small amount in real time, the method having universality, i.e., the ability to be embodied in various forms and modes. Light having a first wavelength and light having a second wavelength, which have different light absorptances with respect to an object to be measured, are each radiated onto the object to be measured using a time-sharing method; the light having the first wavelength and the light having the second wavelength, optically passing through the object to be measured as a result of the irradiation with the light having the first and second wavelengths, are received with a common light receiving sensor; a differential signal between a signal related to the light having the first wavelength and a signal related to the light having the second wavelength to be output from the light receiving sensor according to the received light is formed; and the concentration of a chemical component in the object to be measured is derived on the basis of the differential signal.