The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Jun. 04, 2019
Filed:
Jan. 24, 2018
Lyondell Chemical Technology, L.p., Houston, TX (US);
Sandor Nagy, Seabrook, TX (US);
Barbara Kimmich, Houston, TX (US);
Justin E. Turner, Conroe, TX (US);
Nicholas Bruschi, Houston, TX (US);
George R. Horvat, Houston, TX (US);
Lyondell Chemical Technology, L.P., Houston, TX (US);
Abstract
The present disclosure relates to a method for effecting catalytic selective oxidation in liquid phase comprising a perfluorinated solvent and an olefinic compound with molecular oxygen to produce an epoxide. The method may provide enhanced selectivity to the epoxide of greater than 60%. The olefinic compound may be ethylene, propylene, butenes, 1-octene, butadiene, allyl chloride, allyl alcohol, styrene, and the like. The perfluorinated solvent may be perfluoro methyldecalin, perfluorodecalin, perfluoroperhydrophenanthrene, perfluoro (butyltetrahydrofuran), isomers thereof, or a combination thereof. In some embodiments, the method includes catalytically epoxidizing, in a liquid phase comprising a perfluorinated solvent, propylene with molecular oxygen to produce propylene oxide. A system for carrying out the method is also provided, the system comprising a source of a perfluorinated solvent, and a liquid phase reactor fluidly connected with the source, and configured for effecting catalytic selective oxidation, in a liquid phase comprising the perfluorinated solvent, of an olefinic compound with molecular oxygen to produce an epoxide.