The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Dec. 25, 2018
Filed:
Nov. 30, 2017
Nichia Corporation, Anan-shi, Tokushima, JP;
Atsuo Michiue, Anan, JP;
NICHIA CORPORATION, Anan-Shi, JP;
Abstract
A method for producing a nitride semiconductor device. The method comprises providing a substrate made of a material other than a nitride semiconductor. The material has a hexagonal crystal structure. An upper face of the substrate has at least one flat section. The method further comprises growing a first nitride semiconductor layer on the upper face of the substrate. The first nitride semiconductor layer is made of monocrystalline AlN. The first nitride semiconductor layer has an upper face that is a +c plane. The first nitride semiconductor layer has a thickness in a range of 10 nm to 100 nm. The method further comprises growing a second nitride semiconductor layer on the upper face of the first nitride semiconductor layer. The second nitride semiconductor layer is made of InAlGaN (0≤X, 0≤Y, X+Y<1). In an initial stage of growing the second nitride semiconductor layer, micronuclei are formed in multiple locations on the upper face of the first nitride semiconductor layer such that a plurality of upside-down hexagonal pyramid-shaped or upside-down hexagonal frustum-shaped recesses separate the micronuclei above the at least one flat section of the upper face of the substrate. After the initial stage of growing, further growth is performed to reduce a size of the recesses until the recesses are substantially eliminated. The further growth is performed such that the recesses are substantially eliminated before a thickness of the second nitride semiconductor layer grows to 800 nm. The second nitride semiconductor layer is grown to have an upper face with at least one flat section.