The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Dec. 04, 2018
Filed:
Apr. 22, 2014
Institute of Physics, Chinese Academy of Sciences, Beijing, CN;
Weiya Zhou, Beijing, CN;
Qiang Zhang, Beijing, CN;
Yanchun Wang, Beijing, CN;
Sishen Xie, Beijing, CN;
INSTITUTE OF PHYSICS, CHINESE ACADEMY OF SCIENCES, Beijing, CN;
Abstract
A method for preparing a carbon nanotube (CNT) film is provided, comprising: providing a growth chamber of CNTs, which includes an inlet end, an outlet end, and a first-level growth cavity and a second-level growth cavity, and the first-level growth cavity and the second-level growth cavity are in fluid communication between the inlet end and the outlet end; making precursor materials, which are used for forming CNTs, react in at least the first-level growth cavity of the growth chamber of CNTs to generate CNTs; and making a carrier gas flow into the growth chamber through the inlet end, and pass through the first-level growth cavity and the second-level growth cavity in sequence, wherein, a radial dimension of the first-level growth cavity in a flowing direction of the carrier gas is smaller than that of the second-level growth cavity at a junction between the first-level growth cavity and the second-level growth cavity, and a bubble blowing process is conducted with the precursor materials under the drive of the carrier gas at a position of an opening of the first-level growth cavity within the second-level growth cavity to generate a closed cylindrical CNT film partially disposed in the first-level growth cavity. The method of the present invention can prepare continuous, ultrathin and self-supported transparent conductive CNT film continuously and directly.