The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Oct. 16, 2018
Filed:
Dec. 21, 2016
Beijing University of Technology, Beijing, CN;
Xiaodong Han, Beijing, CN;
Jianfei Zhang, Beijing, CN;
Mao Shengcheng, Beijing, CN;
Yadi Zhai, Beijing, CN;
Xiaodong Wang, Beijing, CN;
Zhipeng Li, Beijing, CN;
Taonan Zhang, Beijing, CN;
Dongfeng Ma, Beijing, CN;
Xiaochen Li, Beijing, CN;
Ze Zhang, Beijing, CN;
BEIJING UNIVERSITY OF TECHNOLOGY, Beijing, CN;
Abstract
A double-tilt in-situ mechanical sample holder for TEM based on piezoelectric ceramic drive belongs to the field of material microstructure-mechanical properties in-situ characterization, and it comprise two parts of sample holder shaft body and piezoelectric ceramic drive system. The sample holder shaft body comprise tilt stage, sample holder, linear stepping motor, drive rod, drive linkage. The piezoelectric ceramic drive system comprise piezoelectric ceramic loading stage, piezoelectric ceramic, connecting base and the sample loading stage realizing stretch or compression function. The double-axis tilt of the samples in X and Y axis directions is realized by the reciprocating motion back and forth of the drive rod driven by the linear stepping motor. The stretch or compression of the samples is realized by applying voltage on the piezoelectric ceramic to generate displacement and push the sample loading stage by the connecting base. The invention coordinating with high resolution TEM realizes the observation of the microstructure in atomic and even sub angstrom scales, and at the same time it ensures the controllable deformation of nanomaterials, further realizes the integrative research on the material microstructure-mechanical properties and reveals the deformation mechanism of the materials.