The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Oct. 09, 2018
Filed:
Apr. 02, 2014
Shenzhen Btr New Energy Materials Inc, Shenzhen, CN;
Min Yue, Shenzhen, CN;
Yan Liang, Shenzhen, CN;
Huiqing Yan, Shenzhen, CN;
Minghua Deng, Shenzhen, CN;
Youyuan Huang, Shenzhen, CN;
SHENZHEN BRT NEW ENERGY MATERIALS INC., Shenzhen, CN;
Abstract
A lithium ion battery graphite negative electrode material and preparation method thereof. The lithium ion battery graphite negative electrode material is a composite material including graphite substrates, surface coating layers coated on the graphite substrates and carbon nanotubes and/or carbon nanofibers grown in situ on the surface of the surface coating layers. The preparation method thereof includes, in solid phase or liquid phase circumstance, the coated carbon material precursor forms the surface coating layer of amorphous carbon by carbonization, and then carbon nanotubes and/or carbon nanofibers having high conductive performance are formed on the surface of the surface coating layers by vapor deposition. This coating mode of the combination of solid phase with gas phase or of liquid phase and gas phase makes the amorphous carbon formed on the surface of the graphite substrates more uniform and dense. The lithium ion battery graphite negative electrode material has properties of high charging-discharging efficiency at first time and excellent cycle stability at either high or low temperatures. The charging-discharging efficiency at first time is up to more than 95%, and the capacity retention after 528 cycles is more than 92%.