The patent badge is an abbreviated version of the USPTO patent document. The patent badge does contain a link to the full patent document.
The patent badge is an abbreviated version of the USPTO patent document. The patent badge covers the following: Patent number, Date patent was issued, Date patent was filed, Title of the patent, Applicant, Inventor, Assignee, Attorney firm, Primary examiner, Assistant examiner, CPCs, and Abstract. The patent badge does contain a link to the full patent document (in Adobe Acrobat format, aka pdf). To download or print any patent click here.
Patent No.:
Date of Patent:
Aug. 14, 2018
Filed:
Aug. 18, 2014
National Research Council of Canada, Ottawa, CA;
Jianfu Ding, Ottawa, CA;
Patrick Malenfant, Ottawa, CA;
Zhao Li, Orleans, CA;
Jacques Lefebvre, Gatineau, CA;
Fuyong Cheng, Ottawa, CA;
Benoit Simard, Ottawa, CA;
Other;
Abstract
A two-step sc-SWCNT enrichment process involves a first step based on selective dispersion and extraction of semi-conducting SWCNT using conjugated polymer followed by a second step based on an adsorptive process in which the product of the first step is exposed to an inorganic absorptive medium to selectively bind predominantly metallic SWCNTs such that what remains dispersed in solution is further enriched in semiconducting SWCNTs. The process is easily scalable for large-diameter semi-conducting single-walled carbon nanotube (sc-SWCNT) enrichment with average diameters in a range, for example, of about 0.6 to 2.2 nm. The first step produces an enriched sc-SWCNT dispersion with a moderated sc-purity (98%) at a high yield, or a high purity (99% and up) at a low yield. The second step can not only enhance the purity of the polymer enriched sc-SWCNTs with a moderate purity, but also further promote the highly purified sample to an ultra-pure level. Therefore, this two-step hybrid process provides sc-SWCNT materials with a super high purity, as well as both a high sc-purity (for example greater than 99%) and a high yield (up to about 20% or higher).