Growing community of inventors

Lausanne, Switzerland

Thijs Vogels

Average Co-Inventor Count = 5.36

ph-index = 5

The patent ph-index is calculated by counting the number of publications for which an author has been cited by other authors at least that same number of times.

Forward Citations = 72

Thijs VogelsBrian McWilliams (12 patents)Thijs VogelsFabrice Rousselle (12 patents)Thijs VogelsMark Joseph Meyer (10 patents)Thijs VogelsJan Novak (10 patents)Thijs VogelsAlex Harvill (5 patents)Thijs VogelsJan Novák (2 patents)Thijs VogelsChristopher Richard Schroers (1 patent)Thijs VogelsMarios Papas (1 patent)Thijs VogelsDavid M Adler (1 patent)Thijs VogelsFarnood Salehi (1 patent)Thijs VogelsMarco Manzi (1 patent)Thijs VogelsMark A Meyer (1 patent)Thijs VogelsHenrik D Dahlberg (1 patent)Thijs VogelsGerhard Röthlin (1 patent)Thijs VogelsAndre C Mazzone (1 patent)Thijs VogelsPer H Christensen (1 patent)Thijs VogelsThijs Vogels (13 patents)Brian McWilliamsBrian McWilliams (15 patents)Fabrice RousselleFabrice Rousselle (12 patents)Mark Joseph MeyerMark Joseph Meyer (48 patents)Jan NovakJan Novak (18 patents)Alex HarvillAlex Harvill (7 patents)Jan NovákJan Novák (9 patents)Christopher Richard SchroersChristopher Richard Schroers (56 patents)Marios PapasMarios Papas (10 patents)David M AdlerDavid M Adler (7 patents)Farnood SalehiFarnood Salehi (3 patents)Marco ManziMarco Manzi (3 patents)Mark A MeyerMark A Meyer (1 patent)Henrik D DahlbergHenrik D Dahlberg (1 patent)Gerhard RöthlinGerhard Röthlin (1 patent)Andre C MazzoneAndre C Mazzone (1 patent)Per H ChristensenPer H Christensen (1 patent)
..
Inventor’s number of patents
..
Strength of working relationships

Company Filing History:

1. Disney Enterprises, Inc. (12 from 2,771 patents)

2. Pixar (10 from 350 patents)

3. Eth Zurich (eidgenossische Technische Hochschule Zurich) (2 from 64 patents)

4. Disnev Enterprises, Inc. (1 from 1 patent)


13 patents:

1. 12373909 - Adaptive sampling using deep learning

2. 12169914 - Temporal techniques of denoising Monte Carlo renderings using neural networks

3. 11532073 - Temporal techniques of denoising Monte Carlo renderings using neural networks

4. 11037274 - Denoising Monte Carlo renderings using progressive neural networks

5. 10796414 - Kernel-predicting convolutional neural networks for denoising

6. 10789686 - Denoising Monte Carlo renderings using machine learning with importance sampling

7. 10706508 - Adaptive sampling in Monte Carlo renderings using error-predicting neural networks

8. 10699382 - Denoising Monte Carlo renderings using neural networks with asymmetric loss

9. 10672109 - Multi-scale architecture of denoising monte carlo renderings using neural networks

10. 10607319 - Denoising monte carlo renderings using progressive neural networks

11. 10586310 - Denoising Monte Carlo renderings using generative adversarial neural networks

12. 10572979 - Denoising Monte Carlo renderings using machine learning with importance sampling

13. 10475165 - Kernel-predicting convolutional neural networks for denoising

Please report any incorrect information to support@idiyas.com
idiyas.com
as of
12/27/2025
Loading…