Growing community of inventors

San Jose, CA, United States of America

Matthias Boehm

Average Co-Inventor Count = 4.40

ph-index = 4

The patent ph-index is calculated by counting the number of publications for which an author has been cited by other authors at least that same number of times.

Forward Citations = 38

Matthias BoehmBerthold Reinwald (9 patents)Matthias BoehmShirish Tatikonda (9 patents)Matthias BoehmDouglas Ronald Burdick (3 patents)Matthias BoehmShivakumar Vaithyanathan (2 patents)Matthias BoehmYuanyuan Tian (2 patents)Matthias BoehmPrithviraj Sen (2 patents)Matthias BoehmAlexandre Valentinovich Evfimievski (2 patents)Matthias BoehmJohn D Keenleyside (2 patents)Matthias BoehmKeith W Campbell (2 patents)Matthias BoehmArash Ashari (2 patents)Matthias BoehmRobert Schulze (1 patent)Matthias BoehmWolfgang Lehner (1 patent)Matthias BoehmLars Dannecker (1 patent)Matthias BoehmMathias Peters (1 patent)Matthias BoehmStefan Burnicki (1 patent)Matthias BoehmMatthias Boehm (10 patents)Berthold ReinwaldBerthold Reinwald (36 patents)Shirish TatikondaShirish Tatikonda (14 patents)Douglas Ronald BurdickDouglas Ronald Burdick (14 patents)Shivakumar VaithyanathanShivakumar Vaithyanathan (41 patents)Yuanyuan TianYuanyuan Tian (22 patents)Prithviraj SenPrithviraj Sen (18 patents)Alexandre Valentinovich EvfimievskiAlexandre Valentinovich Evfimievski (10 patents)John D KeenleysideJohn D Keenleyside (6 patents)Keith W CampbellKeith W Campbell (3 patents)Arash AshariArash Ashari (2 patents)Robert SchulzeRobert Schulze (33 patents)Wolfgang LehnerWolfgang Lehner (26 patents)Lars DanneckerLars Dannecker (21 patents)Mathias PetersMathias Peters (1 patent)Stefan BurnickiStefan Burnicki (1 patent)
..
Inventor’s number of patents
..
Strength of working relationships

Company Filing History:

1. International Business Machines Corporation (9 from 164,108 patents)

2. Sap Se (1 from 5,892 patents)


10 patents:

1. 10534590 - Dynamic recompilation techniques for machine learning programs

2. 10268461 - Global data flow optimization for machine learning programs

3. 10228922 - Hybrid parallelization strategies for machine learning programs on top of mapreduce

4. 10223762 - Pipelined approach to fused kernels for optimization of machine learning workloads on graphical processing units

5. 10198291 - Runtime piggybacking of concurrent jobs in task-parallel machine learning programs

6. 9972063 - Pipelined approach to fused kernels for optimization of machine learning workloads on graphical processing units

7. 9715373 - Dynamic recompilation techniques for machine learning programs

8. 9684493 - R-language integration with a declarative machine learning language

9. 9361273 - Context-aware parameter estimation for forecast models

10. 9286044 - Hybrid parallelization strategies for machine learning programs on top of MapReduce

Please report any incorrect information to support@idiyas.com
idiyas.com
as of
12/3/2025
Loading…