Growing community of inventors

Ostermundingen, Switzerland

Fabrice Rousselle

Average Co-Inventor Count = 5.14

ph-index = 5

The patent ph-index is calculated by counting the number of publications for which an author has been cited by other authors at least that same number of times.

Forward Citations = 72

Fabrice RousselleBrian McWilliams (12 patents)Fabrice RousselleThijs Vogels (12 patents)Fabrice RousselleMark Joseph Meyer (10 patents)Fabrice RousselleJan Novak (10 patents)Fabrice RousselleAlex Harvill (5 patents)Fabrice RousselleJan Novák (2 patents)Fabrice RousselleFabrice Rousselle (12 patents)Brian McWilliamsBrian McWilliams (15 patents)Thijs VogelsThijs Vogels (13 patents)Mark Joseph MeyerMark Joseph Meyer (48 patents)Jan NovakJan Novak (18 patents)Alex HarvillAlex Harvill (7 patents)Jan NovákJan Novák (9 patents)
..
Inventor’s number of patents
..
Strength of working relationships

Company Filing History:

1. Disney Enterprises, Inc. (11 from 2,772 patents)

2. Pixar (10 from 350 patents)

3. Eth Zurich (eidgenossische Technische Hochschule Zurich) (2 from 64 patents)

4. Disnev Enterprises, Inc. (1 from 1 patent)


12 patents:

1. 12169914 - Temporal techniques of denoising Monte Carlo renderings using neural networks

2. 11532073 - Temporal techniques of denoising Monte Carlo renderings using neural networks

3. 11037274 - Denoising Monte Carlo renderings using progressive neural networks

4. 10796414 - Kernel-predicting convolutional neural networks for denoising

5. 10789686 - Denoising Monte Carlo renderings using machine learning with importance sampling

6. 10706508 - Adaptive sampling in Monte Carlo renderings using error-predicting neural networks

7. 10699382 - Denoising Monte Carlo renderings using neural networks with asymmetric loss

8. 10672109 - Multi-scale architecture of denoising monte carlo renderings using neural networks

9. 10607319 - Denoising monte carlo renderings using progressive neural networks

10. 10586310 - Denoising Monte Carlo renderings using generative adversarial neural networks

11. 10572979 - Denoising Monte Carlo renderings using machine learning with importance sampling

12. 10475165 - Kernel-predicting convolutional neural networks for denoising

Please report any incorrect information to support@idiyas.com
idiyas.com
as of
1/2/2026
Loading…