Growing community of inventors

Willow Spring, NC, United States of America

David Contreras

Average Co-Inventor Count = 3.79

ph-index = 3

The patent ph-index is calculated by counting the number of publications for which an author has been cited by other authors at least that same number of times.

Forward Citations = 24

David ContrerasRobert Christian Sizemore (9 patents)David ContrerasCorville O Allen (8 patents)David ContrerasRoberto Delima (8 patents)David ContrerasBrendan Bull (8 patents)David ContrerasSterling Richardson Smith (8 patents)David ContrerasKeith P Biegert (5 patents)David ContrerasKrishna Mahajan (5 patents)David ContrerasAysu Ezen Can (4 patents)David ContrerasChris M Mwarabu (4 patents)David ContrerasKandhan Sekar (3 patents)David ContrerasAndrew Ronald Freed (2 patents)David ContrerasBrien H Muschett (2 patents)David ContrerasPaul Lewis Felt (2 patents)David ContrerasBob Delima (2 patents)David ContrerasThomas Hay Rogers (1 patent)David ContrerasDavid Contreras (23 patents)Robert Christian SizemoreRobert Christian Sizemore (36 patents)Corville O AllenCorville O Allen (349 patents)Roberto DelimaRoberto Delima (44 patents)Brendan BullBrendan Bull (43 patents)Sterling Richardson SmithSterling Richardson Smith (30 patents)Keith P BiegertKeith P Biegert (6 patents)Krishna MahajanKrishna Mahajan (5 patents)Aysu Ezen CanAysu Ezen Can (36 patents)Chris M MwarabuChris M Mwarabu (7 patents)Kandhan SekarKandhan Sekar (5 patents)Andrew Ronald FreedAndrew Ronald Freed (169 patents)Brien H MuschettBrien H Muschett (30 patents)Paul Lewis FeltPaul Lewis Felt (24 patents)Bob DelimaBob Delima (2 patents)Thomas Hay RogersThomas Hay Rogers (5 patents)
..
Inventor’s number of patents
..
Strength of working relationships

Company Filing History:

1. International Business Machines Corporation (23 from 164,275 patents)


23 patents:

1. 11687796 - Document type-specific quality model

2. 11593561 - Contextual span framework

3. 11397851 - Classifying text to determine a goal type used to select machine learning algorithm outcomes

4. 11392764 - Classifying text to determine a goal type used to select machine learning algorithm outcomes

5. 11295080 - Automatic detection of context switch triggers

6. 11205053 - Semantic evaluation of tentative triggers based on contextual triggers

7. 11138380 - Identifying semantic relationships using visual recognition

8. 11120215 - Identifying spans using visual recognition

9. 11113469 - Natural language processing matrices

10. 11017171 - Relevancy as an indicator for determining document quality

11. 10956662 - List manipulation in natural language processing

12. 10902044 - Cognitive document quality determination with automated heuristic generation

13. 10740555 - Deep learning approach to grammatical correction for incomplete parses

14. 10599776 - Predicate parses using semantic knowledge

15. 10585984 - Techniques for improving input text processing in a data processing system that answers questions

Please report any incorrect information to support@idiyas.com
idiyas.com
as of
1/17/2026
Loading…