Growing community of inventors

Karlsruhe, Germany

Daniel Bernau

Average Co-Inventor Count = 3.19

ph-index = 3

The patent ph-index is calculated by counting the number of publications for which an author has been cited by other authors at least that same number of times.

Forward Citations = 19

Daniel BernauMartin Haerterich (4 patents)Daniel BernauPhilip-William Grassal (4 patents)Daniel BernauFlorian Kerschbaum (3 patents)Daniel BernauJonas Boehler (2 patents)Daniel BernauBenjamin Hilprecht (2 patents)Daniel BernauCedric Hebert (1 patent)Daniel BernauAxel Schroepfer (1 patent)Daniel BernauKilian Becher (1 patent)Daniel BernauFlorian Hahn (1 patent)Daniel BernauAmine Lahouel (1 patent)Daniel BernauWasilij Beskorovajnov (1 patent)Daniel BernauJonas Robl (1 patent)Daniel BernauHannah Keller (1 patent)Daniel BernauJohannes Haasen (1 patent)Daniel BernauLars Baumann (1 patent)Daniel BernauHannah Keller (1 patent)Daniel BernauDaniel Bernau (11 patents)Martin HaerterichMartin Haerterich (26 patents)Philip-William GrassalPhilip-William Grassal (4 patents)Florian KerschbaumFlorian Kerschbaum (66 patents)Jonas BoehlerJonas Boehler (8 patents)Benjamin HilprechtBenjamin Hilprecht (2 patents)Cedric HebertCedric Hebert (32 patents)Axel SchroepferAxel Schroepfer (23 patents)Kilian BecherKilian Becher (14 patents)Florian HahnFlorian Hahn (8 patents)Amine LahouelAmine Lahouel (1 patent)Wasilij BeskorovajnovWasilij Beskorovajnov (1 patent)Jonas RoblJonas Robl (1 patent)Hannah KellerHannah Keller (1 patent)Johannes HaasenJohannes Haasen (1 patent)Lars BaumannLars Baumann (1 patent)Hannah KellerHannah Keller (1 patent)
..
Inventor’s number of patents
..
Strength of working relationships

Company Filing History:

1. Sap Se (11 from 5,892 patents)


11 patents:

1. 12401493 - Performance benchmarking with cascaded decryption

2. 12147577 - Interpretability framework for differentially private deep learning

3. 12001588 - Interpretability framework for differentially private deep learning

4. 11501172 - Accurately identifying members of training data in variational autoencoders by reconstruction error

5. 11449639 - Differential privacy to prevent machine learning model membership inference

6. 11366982 - Computer systems for detecting training data usage in generative models

7. 10746567 - Privacy preserving smart metering

8. 10628608 - Anonymization techniques to protect data

9. 10445527 - Differential privacy and outlier detection within a non-interactive model

10. 10423781 - Providing differentially private data with causality preservation

11. 10380366 - Tracking privacy budget with distributed ledger

Please report any incorrect information to support@idiyas.com
idiyas.com
as of
12/7/2025
Loading…