Growing community of inventors

Zurich, Switzerland

Brian McWilliams

Average Co-Inventor Count = 5.08

ph-index = 5

The patent ph-index is calculated by counting the number of publications for which an author has been cited by other authors at least that same number of times.

Forward Citations = 73

Brian McWilliamsThijs Vogels (12 patents)Brian McWilliamsFabrice Rousselle (12 patents)Brian McWilliamsJan Novak (11 patents)Brian McWilliamsMark Joseph Meyer (10 patents)Brian McWilliamsAlex Harvill (5 patents)Brian McWilliamsAlexander Sorkine Hornung (2 patents)Brian McWilliamsChristopher Richard Schroers (2 patents)Brian McWilliamsJan Novák (2 patents)Brian McWilliamsMarkus H Gross (1 patent)Brian McWilliamsFederico Perazzi (1 patent)Brian McWilliamsAbdelaziz Djelouah (1 patent)Brian McWilliamsFabrice Pierre Armand Rousselle (1 patent)Brian McWilliamsSimone Meyer (1 patent)Brian McWilliamsYifan Wang (1 patent)Brian McWilliamsBrian McWilliams (15 patents)Thijs VogelsThijs Vogels (13 patents)Fabrice RousselleFabrice Rousselle (12 patents)Jan NovakJan Novak (18 patents)Mark Joseph MeyerMark Joseph Meyer (48 patents)Alex HarvillAlex Harvill (7 patents)Alexander Sorkine HornungAlexander Sorkine Hornung (73 patents)Christopher Richard SchroersChristopher Richard Schroers (55 patents)Jan NovákJan Novák (9 patents)Markus H GrossMarkus H Gross (66 patents)Federico PerazziFederico Perazzi (23 patents)Abdelaziz DjelouahAbdelaziz Djelouah (23 patents)Fabrice Pierre Armand RousselleFabrice Pierre Armand Rousselle (11 patents)Simone MeyerSimone Meyer (4 patents)Yifan WangYifan Wang (3 patents)
..
Inventor’s number of patents
..
Strength of working relationships

Company Filing History:

1. Disney Enterprises, Inc. (14 from 2,767 patents)

2. Pixar (10 from 349 patents)

3. Eth Zurich (eidgenossische Technische Hochschule Zurich) (3 from 63 patents)

4. Eth Zurich (1 from 283 patents)

5. Disnev Enterprises, Inc. (1 from 1 patent)


15 patents:

1. 12169914 - Temporal techniques of denoising Monte Carlo renderings using neural networks

2. 11532073 - Temporal techniques of denoising Monte Carlo renderings using neural networks

3. 11037274 - Denoising Monte Carlo renderings using progressive neural networks

4. 10818080 - Piecewise-polynomial coupling layers for warp-predicting neural networks

5. 10796414 - Kernel-predicting convolutional neural networks for denoising

6. 10789686 - Denoising Monte Carlo renderings using machine learning with importance sampling

7. 10706508 - Adaptive sampling in Monte Carlo renderings using error-predicting neural networks

8. 10699382 - Denoising Monte Carlo renderings using neural networks with asymmetric loss

9. 10672109 - Multi-scale architecture of denoising monte carlo renderings using neural networks

10. 10621695 - Video super-resolution using an artificial neural network

11. 10607319 - Denoising monte carlo renderings using progressive neural networks

12. 10586310 - Denoising Monte Carlo renderings using generative adversarial neural networks

13. 10572979 - Denoising Monte Carlo renderings using machine learning with importance sampling

14. 10491856 - Video frame interpolation using a convolutional neural network

15. 10475165 - Kernel-predicting convolutional neural networks for denoising

Please report any incorrect information to support@idiyas.com
idiyas.com
as of
12/4/2025
Loading…