Growing community of inventors

San Jose, CA, United States of America

Alexander Herzog

Average Co-Inventor Count = 4.72

ph-index = 2

The patent ph-index is calculated by counting the number of publications for which an author has been cited by other authors at least that same number of times.

Forward Citations = 6

Alexander HerzogMrinal Kalakrishnan (3 patents)Alexander HerzogYunfei Bai (2 patents)Alexander HerzogBenjamin Holson (2 patents)Alexander HerzogAdrian Li (2 patents)Alexander HerzogSergey Levine (1 patent)Alexander HerzogSeyed Mohammad Khansari Zadeh (1 patent)Alexander HerzogEric Jang (1 patent)Alexander HerzogPaul Wohlhart (1 patent)Alexander HerzogJulian Ibarz (1 patent)Alexander HerzogChelsea Finn (1 patent)Alexander HerzogDaniel Kappler (1 patent)Alexander HerzogChuyuan Fu (1 patent)Alexander HerzogWenlong Lu (1 patent)Alexander HerzogDaniel Ho (1 patent)Alexander HerzogZhuo Xu (1 patent)Alexander HerzogC Karen Liu (1 patent)Alexander HerzogAllan Zhou (1 patent)Alexander HerzogDmitry Kalashnikov (1 patent)Alexander HerzogWenhao Yu (1 patent)Alexander HerzogAlexander Herzog (5 patents)Mrinal KalakrishnanMrinal Kalakrishnan (30 patents)Yunfei BaiYunfei Bai (28 patents)Benjamin HolsonBenjamin Holson (23 patents)Adrian LiAdrian Li (13 patents)Sergey LevineSergey Levine (29 patents)Seyed Mohammad Khansari ZadehSeyed Mohammad Khansari Zadeh (15 patents)Eric JangEric Jang (12 patents)Paul WohlhartPaul Wohlhart (10 patents)Julian IbarzJulian Ibarz (7 patents)Chelsea FinnChelsea Finn (5 patents)Daniel KapplerDaniel Kappler (4 patents)Chuyuan FuChuyuan Fu (3 patents)Wenlong LuWenlong Lu (3 patents)Daniel HoDaniel Ho (2 patents)Zhuo XuZhuo Xu (1 patent)C Karen LiuC Karen Liu (1 patent)Allan ZhouAllan Zhou (1 patent)Dmitry KalashnikovDmitry Kalashnikov (1 patent)Wenhao YuWenhao Yu (1 patent)
..
Inventor’s number of patents
..
Strength of working relationships

Company Filing History:

1. Google Inc. (3 from 32,429 patents)

2. X Development LLC (2 from 1,194 patents)


5 patents:

1. 12210943 - Training a policy model for a robotic task, using reinforcement learning and utilizing data that is based on episodes, of the robotic task, guided by an engineered policy

2. 12083678 - Efficient adaption of robot control policy for new task using meta-learning based on meta-imitation learning and meta-reinforcement learning

3. 11833661 - Utilizing past contact physics in robotic manipulation (e.g., pushing) of an object

4. 11685045 - Asynchronous robotic control using most recently selected robotic action data

5. 11610153 - Generating reinforcement learning data that is compatible with reinforcement learning for a robotic task

Please report any incorrect information to support@idiyas.com
idiyas.com
as of
12/4/2025
Loading…